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Abstract The molecular communication system in the resolution of the basis func-
tions χ = {χX} contributed by the molecule constituent atoms {X}, the key concept
of the Orbital Communication Theory (OCT) of the chemical bond, is introduced
and its information-theoretic (IT) bond descriptors are summarized. The additive and
non-additive components of these molecular information channels are identified. The
former involve only the internal (one-center) communications {X → X} between the
basis functions χX of each bonded atom X, determined by the associated (diagonal)
block P(χX|χX) of the molecular conditional probabilities, which are responsible for
the intra-atom promotion to its effective valence state. The latter accordingly involve
only the external (two-center) communications between the contributed AO of each
pair of bonded atoms, {Y → X and X → Y}, generated by the off-diagonal blocks of
conditional probabilities P(χX|χY) and P(χY|χX),X �= Y, respectively, which are
responsible for the inter-atomic bonding effects in the molecule. Both these probabil-
ity scatterings ultimately determine the resultant multiplicities of the system chemical
bonds. The input-ensemble average value of the channel conditional-entropy, which
measures its communication “noise” due to electron delocalization via all chemical
bonds, measures the IT-covalency in the molecule, while the complementary descrip-
tor of the ensemble average value of the network mutual-information (information-
capacity) reflects the electron localization effects and measures the system IT-ionic
component. The illustrative example of the localized chemical bond originating from
the interaction between two atomic orbitals is reexamined in some detail and the bond-
weighted ensemble approach to chemical interactions in diatomic molecular fragments

Throughout the article the symbols X, X, and X , respectively denote a square (rectangular) matrix, a
row vector, and a scalar quantity.
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is discussed within the standard Restricted Hartree-Fock theory. In diatomic systems
such treatment exactly reproduces the familiar bond index of Wiberg and provides its
resolution into the complementary IT-covalent and IT-ionic components. The opera-
tor formulation of the probability-scattering phenomena in molecules is given and the
probability-amplitude channel defined by the first-order density matrix is introduced.
The AIM internal and external eigenvalue problems of this Charge-and-Bond-Order
matrix are introduced and a similar approach to probability propagation matrices/oper-
ators is suggested.

Keywords Additive/non-additive subchannels · Bond ionicity/covalency ·
Chemical bond multiplicities · Entropy/information bond descriptors ·
Information theory · Orbital communication theory · Wiberg bond index

1 Introduction

The concepts and techniques of Information Theory (IT) [1–8] have been success-
fully used to explore the chemical properties of molecules and their fragments, and
to examine the bonding patterns in molecular and reactive systems, e.g., [9,10]. The
non-additive Fisher information in Atomic Orbital (AO) resolution has been recently
used to define the Contra-Gradience (CG) criterion for localizing the bonding regions
in molecules [10–13], while the related information density in the Molecular Orbital
(MO) resolution has been shown [9,14] to determine the key ingredient of the Elec-
tron-Localization Function (ELF) [15]. The Communication Theory of the Chemical
Bond (CTCB) has been developed using the basic entropy/information descriptors
of the molecular information (communication) channels in the bonded-atom, orbital
and local resolution levels of the electron probability distributions [9,10,16–32]. The
same bond descriptors have been used to provide the information-scattering perspec-
tive on the intermediate stages in the electron redistribution processes [33], including
the atom promotion via the orbital hybridization [34], and the communication theory
for excited electron configurations has been developed [35–37]. To summarize, the
entropic probes of the molecular electronic structure have provided novel, attractive
tools for describing the chemical bond phenomenon in information terms.

Each level of resolving the molecular electron density (ρ) or probability (p = ρ/N )
distribution of N electrons into the system constituent fragments, ρ = ∑

α ρα , e.g., the
pieces ρ = {ρα} attributed to Atoms-in-Molecules (AIM), Molecular Orbitals (MO)
or the Atomic-Orbital (AO) basis functions, implies the associated division of the
molecular (total) physical quantity A[ρ] into its additive, Aadd.[ρ], and non-additive,
Anadd.[ρ], contributions:

A[ρ] ≡ Atotal [ρ] = Aadd.[ρ] + Anadd.[ρ], Aadd.[ρ] =
∑

α

A[ρα]. (1)

We have indicated above that in the underlying “multi-component” system A[ρ]
becomes the functional of the whole vector of the subsystem densities: A[ρ] =
Atotal [ρ] [38]. For example, this Gordon-Kim-type division [39] of the kinetic energy
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functional defines the non-additive contribution, which constitutes the basis of the
DFT-embedding concept of Cortona and Wesołowski [40–43].

Such a division can be also used to partition the information quantities themselves
[9–14]. In particular, the inverse of the non-additive Fisher information in the MO res-
olution has been shown to define the IT-ELF concept [14], in the spirit of the original
Becke and Edgecombe formulation [15], while the related quantity in the AO resolu-
tion of the Self-Consistent Field (SCF) or Kohn-Sham (KS) [44] MO theories offers
the key CG criterion for localizing the chemical bonds [11–13].

The key concept of CTCB is the molecular information system, which can be con-
structed at alternative levels of resolving the electron probabilities into contributions
corresponding to the underlying elementary “events” determining the channel inputs
a = {ai } and outputs b = {b j }, e.g., the finding of an electron on the specified AO,
MO, AIM, molecular fragment, etc. Such communication channels can be generated
within both the local and condensed descriptions of electronic probabilities. These
networks describe the probability/information propagation in the molecule and can be
characterized by the standard entropic quantities developed in IT for real communi-
cation devices [3,4,7,8].

Due to the electron delocalization throughout the network of chemical bonds in the
molecule the transmission of “signals” about the electron-assignment to the underly-
ing events of the resolution in question becomes randomly disturbed, thus exhibiting
typical communication “noise”. Indeed, an electron initially attributed to the given AO
in the channel “input” a (molecular, promolecular, or the “ensemble” tailored) can be
later found with a non-zero probability at several locations in the molecular “output” b.
This feature of the electron delocalization is embodied in the system conditional prob-
abilities of the outputs-given-inputs, P(b|a) = {P(b j |ai ) ≡ P( j |i)}, which define the
molecular information network. In the one-electron approach of OCT [30–32,35–37]
one constructs this matrix using the superposition-principle of quantum mechanics
[45], appropriately supplemented by the “physical” projection onto the subspace of the
system occupied MO, which determine the pattern of chemical bonds [30–32]. Both
the molecule as a whole and its constituent subsystems can be adequately described
using the OCT bond indices. The internal and external indices of molecular fragments
(groups of AO) can be efficiently generated using the appropriate reduction of the
molecular channel, by combining selected outputs into larger fragment(s) [31].

Recent developments in CTCB include its orbital formulation, called the Orbital
Communication Theory (OCT) [30–32,38,39], which was shown to be capable of
reproducing the chemical (Wiberg [46]) bond orders in diatomic molecules [37]. In
view of the importance of the non-additive information terms in describing bonding
effects in molecules [10–14] a similar partition of the molecular communication sys-
tems into their additive and non-additive sub-channels has recently been suggested
[10]. This division of molecular information channels separates their additive (one-
center) communications between AO, which give rise to the non-bonding promotion
of bonded atoms, from the non-additive (two-center) probability scattering, which
generates the truly bonding effects in molecules. Clearly, both these types of the prob-
ability propagation ultimately affect the resultant IT bond descriptors. It is the main
purpose of the present work to explore and further develop this novel perspective on
the information-redistribution processes in molecular systems.
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2 Molecular communication systems in atomic orbital resolution

In OCT the off-diagonal orbital communications have been recently shown [30] to
be proportional to the Wiberg [46] or related quadratic indices of the chemical bond
multiplicity [47–56], all formulated within the standard SCF LCAO MO theory. The
Wiberg-calibrated IT indices of diatomic interactions in molecules, generated using
the bond-weighted ensemble approach, which adopts the flexible (“ensemble”) input
probabilities to probe the localized bond in the molecule, have been successfully
implemented in the RHF MO theory [37]. The resulting IT descriptors been shown to
account for the chemical intuition quite well, at the same time providing the resolu-
tion of diatomic bond-multiplicities into the complementary IT-covalent and IT-ionic
components. In the same study the need for recognizing the signs of the off-diagonal
matrix elements of the CBO matrix has been stressed, in order to properly account for
the so called “occupation” decoupling, when the anti-bonding MO become populated,
e.g., in the excited electron configurations.

In MO theory the network of chemical bonds is determined by the occupied MO
in the system ground-state. For simplicity, we assume the closed-shell (cs) configu-
ration of N = 2n electronic system, in the standard Restricted Hartree-Fock (RHF)
description, which involves the n lowest (doubly-occupied, orthonormal) MO. In the
familiar LCAO MO approach they are generated as linear combinations (LC) of the
orthogonalized AO (OAO), χ = (χ1, χ2, . . ., χm) = {χi }, 〈χ | χ〉 = {δi, j } ≡ I, e.g.,
the familiar Löwdin OAO, ϕ = (ϕ1, ϕ2, . . ., ϕn) = {ϕs} = χC, where the rectan-
gular matrix C = {Ci,s} = 〈χ | ϕ〉 groups the relevant expansion coefficients, to be
determined using the iterative SCF procedure.

The system electron density,

ρ(r) = 2ϕ(r)ϕ†(r) = χ(r)[2CC†]χ†(r) ≡ χ(r)γχ†(r) = N p(r), (2)

and hence also the one-electron probability distribution p(r) = ρ(r)/N , representing
the shape-factor of ρ, are both determined by the one-electron density matrix γ, called
the Charge-and-Bond-Order (CBO) matrix, which constitutes the AO representation
of the projection operator P̂ϕ = |ϕ〉〈ϕ| = ∑

s |ϕs〉〈ϕs | ≡ ∑
s P̂s onto the subspace of

all occupied MO:

γ = 2 〈χ | ϕ〉 〈ϕ |χ〉 = 2CC† ≡ 2 〈χ | P̂ϕ |χ〉
=
{
γi, j = 2 〈χi | P̂ϕ

∣
∣χ j

〉 ≡ 2 〈i | P̂ϕ | j〉
}
. (3)

It satisfies the following idempotency relation:

(γ)2 = 4 〈χ | P̂ϕ |χ〉 〈χ | P̂ϕ |χ〉 = 4 〈χ | P̂
2
ϕ |χ〉 = 4 〈χ | P̂ϕ |χ〉 = 2γ. (4)

The CBO matrix reflects the promoted, valence-states of AO in the molecule with the
diagonal elements measuring the effective electron occupations of these basis func-
tions, {Ni = γi,i = Npi }, and hence also the probabilities p = {pi = γi,i/N } of the
AO being occupied in the molecule,

∑
i pi = 1.
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The molecular information system in the (condensed) orbital resolution involves
the AO events χ in its input a = {χi } ≡ {i} and output b = {χ j } ≡ { j}. It represents
the effective communication promotion of these basis functions in the molecule via
the probability/information scattering described by the conditional probabilities of the
AO-outputs given the AO-inputs, identified by the row (input) and column (output)
indices i and j , respectively. In this one-electron description the AO→AO communi-
cation network is determined by the conditional probabilities of the output AO-events,
given the input AO-events [9,30],

P(b|a) = {P(χ j |χi ) ≡ P( j |i) = P(i ∧ j)/pi } ≡ P(χ |χ),
∑

j

P( j |i) = 1, (5)

where the associated joint probabilities of simultaneously observing two AO in the
system chemical bonds P(a ∧ b) = {P(i ∧ j)} satisfy the usual partial and total
normalization relations:

∑

i

P(i ∧ j) = p j ,
∑

j

P(i ∧ j) = pi ,
∑

i

∑

j

P(i ∧ j) = 1. (6)

The conditional probabilities of Eq. (5) define the probability scattering in the AO-
promotion channel of the molecule, in which the “signals” of the molecular electron
allocations to basis functions are transmitted between the AO inputs and outputs. Such
information system constitutes the basis of the OCT of the chemical bond.

As argued elsewhere [30–32,37] this matrix of the (physical) conditional probabil-
ities involves the squares of corresponding elements of the CBO matrix:

P(b|a) =
{

P( j |i) = Ni

∣
∣
∣〈i | P̂ϕ | j〉

∣
∣
∣
2 = (2γi,i )

−1γi, jγ j,i

}

, (7)

where the closed-shell normalization constant Ni = (2γi,i )
−1 follows directly from

Eq. (4) (for the open-shell generalization see [37]). These probabilities explore the
dependencies between AO resulting from their participation in the framework of the
occupied MO, i.e. their involvement in the entire network of chemical bonds in the
molecule.

This AO-resolved channel can be probed using the promolecular (p0 = {p0
i }) or

molecular input probabilities, with the former corresponding to a collection of the
“frozen” densities of the free (non-bonded) atoms placed in their molecular posi-
tions. Alternatively, some arbitrary (ensemble) input signals can be used to extract the
“weighted” IT indices of bond multiplicities in molecular fragments and in the system
as a whole, as well as their ionic and covalent components [9,37]. One also observes
that the molecular input P(a) ≡ p generates the same distribution in the output of the
molecular channel,

pP (b|a) = P(b) ≡ q =
{
∑

i

pi P ( j |i) ≡
∑

i

P(i ∧ j) = p j

}

= p, (8)
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thus identifying p as the stationary probability vector for the molecular ground state,
while the promolecular input P(a0) ≡ p0 in general produces different output proba-
bility: p0P(b|a) = P0(b) ≡ q0 �= p0.

The associated joint probability matrix,

P(a ∧ b) =
{

P(i ∧ j) = pi P( j |i) = (2N )−1 γi, jγ j,i

= (2/N ) 〈i | P̂ϕ | j〉 〈 j | P̂ϕ |i〉 ≡ (2/N ) 〈i | P̂ϕ P̂ j P̂ϕ |i〉
}
, (9)

then satisfies the normalization conditions of Eq. (6), e.g.,

∑

i

P(i ∧ j) = (2N )−1 ∑

i

γ j,iγi, j = (2N )−1 2γ j, j = p j . (10)

The off-diagonal conditional probability of j th AO-output given i th AO-input is thus
proportional to the squared element of the CBO matrix linking the two AO, γ j,i = γi, j ,
thus being also proportional to the corresponding AO contribution Mi, j = γ 2

i, j to
Wiberg’s [46–49] index of the overall chemical bond order between two atoms A and
B in the molecule,

M(A,B) =
∑

i∈A

∑

j∈B

Mi, j , (11)

or to its generalized analogs in MO theory [50–56]. Hence, the vanishing commu-
nication between AO marks the absence of any chemical interaction between them.
Therefore, the information channel in the promolecular reference state can exhibit only
the diagonal one-center (intra-atomic) communications, while the presence of both
the one- and two-center (inter-atomic) probability propagations marks the collection
of AIM.

In OCT the entropy/information indices of the covalent/ionic components of all
chemical bonds in the given molecular system represent the complementary descrip-
tors of the average communication noise and the associated amount of information flow
in the molecular information channel. The purely molecular communication channel,
with p defining its input signal, is devoid of any reference (history) of the chemical
bond formation and generates the average-noise index of the molecular IT bond-cov-
alency, measured by the conditional-entropy of the system outputs given inputs:

S(P(b)|P(a)) = S(q|p) =−
∑

i

∑

j

P(i ∧ j) log[P(i ∧ j)/pi ]

= S(P(a)|P(b)) = S(p|q)
= −

∑

i

∑

j

P(i ∧ j) log[P(i ∧ j)/p j ]

=
∑

i

pi

⎡

⎣−
∑

j

P( j |i)logP( j |i)
⎤

⎦ ≡
∑

i

pi Si ≡ S. (12)

123



J Math Chem (2010) 47:709–738 715

This average-noise descriptor expresses the difference between the Shannon entropies
of the molecular one- and two-orbital probabilities,

S = −
∑

i

∑

j

P(i ∧ j) log P(i ∧ j)+
∑

i

pi log pi ≡ S(P(a ∧ b))− S(P(a)).

(13)

The AO channel with the promolecular (reference) input “signal” P(a0) = p0 refers
to the initial state in the bond-formation process. It corresponds to the ground-state
(fractional) occupations of the AO contributed by the system constituent free-atoms,
before their mixing into MO, and gives rise to the average information-flow descriptor
of the system IT bond-ionicity, measured by the mutual-information in the channel
inputs and outputs:

I (P(a0) : P(b)) = I (p0 : p) =
∑

i

∑

j

P0(i ∧ j) log
[

P(i ∧ j)/
(

p j p0
i

)]

≡
∑

i

p0
i

⎧
⎨

⎩

∑

j

P ( j |i) log
[

P (i | j) /p0
i

]
⎫
⎬

⎭
≡
∑

i

pi I 0
i

= S(P(b))+ S(P(a0))− S(P(a ∧ b)) = S(p0)− S ≡ I 0. (14)

This amount of information reflects the fraction of the initial (promolecular) informa-
tion content S(p0), which has not been dissipated as noise in the molecular commu-
nication system. In particlular, for the molecular input signal, when p0 = p,

I (P(a) : P(b)) = I (p : p) =
∑

i

∑

j

P (i, j) log
[
P (i, j) /

(
p j pi

)]

≡
∑

i

pi Ii = S(p)− S. (15)

Finally, the sum of these two bond components, e.g.,

N(P(a0); P(b)) = S + I 0 = N(p0; p) ≡ N0 = S(p0)

=
∑

i

pi

(
Si + I 0

i

)
≡
∑

i

piN0
i , (16)

where N0
i = −logp0

i stands for the self-information in the promolecular AO-intput
event χi , measures the overall IT bond-multiplicity of all bonds in the molecular sys-
tem under consideration. It is seen to be conserved at the promolecular-entropy level,
which marks the initial information content of AO probabilities. Alternatively, for the
molecular input, when P(a) = p, this quantity preserves the Shannon entropy of the
molecular input probabilities:

123



716 J Math Chem (2010) 47:709–738

S(p|q) I(p:q) S(q|p)

S(p)            S(q)
Scheme 1 A qualitative diagram of the conditional entropy and mutual information quantities of two depen-
dent probability distributions p and q. Two circles enclose the areas representing the entropies S(p) and S(q)
of the two separate distributions. The common (overlap) area of the circles corresponds to the mutual infor-
mation in two distributions: I (p : q) = S(p)− S(p|q) = S(q)− S(q|p). The remaining parts of the circles
represent the corresponding conditional entropies S(p|q) and S(q|p), measuring the residual uncertainty
about events in one set, when one has the full knowledge of the occurrence of the events in the other set of
outcomes. The area enclosed by the envelope of the two overlapping circles then represents the entropy of
the “product” (joint) distribution: S(P(a ∧ b)) = S(p)+ S(q)− I (p : q) = S(p)+ S(q|p) = S(q)+ S(p|q)

N(P(a); P(b)) = S(P(b)|P(a))+ I (P(a) : P(b))

=
∑

i

pi (Si + Ii ) ≡
∑

i

piNi = S(P(a)) = S(p). (17)

In the qualitative diagram of Scheme 1 illustrating the entropy/information quanti-
ties of two dependent probability distributions p and q, the common (overlap) area
of the associated entropy circles corresponds to the mutual information in both dis-
tributions, I (P(a) : P(b)) = I (p : q), while the remaining parts of individual cir-
cles represent the corresponding conditional entropies S(P(b)|P(a)) = S(q|p) or
S(P(a)|P(b)) = S(p|q). The latter measure the residual uncertainty about events in
one set, when one has the full knowledge of the occurrence of the events in the other
set of events. Accordingly, the area enclosed by the envelope of these two overlapping
circles represents the entropy in the joint distribution of the two sets of outcomes:

S(p ∧ q) = S(p)+ S(q)− I (p : q) = S(p)+ S(q|p) = S(q)+ S(p|q). (18)

Troughout the paper the logarithm is taken to an arbitrary but fixed base: when log =
log2, the information is measured in bits, while selecting log = ln expresses the infor-
mation content of the probability distribution in nats: 1 nat = 1.44 bits.
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3 Additive and non-additive components of molecular channels

Let us combine the molecular basis functions of typical LCAO MO calculations into
the corresponding atomic subsets:

χ = {χX} = (χA,χB,χC, . . .) ≡ χAIM. (19)

This arrangement determines the associated block structure of the AO conditional
probability matrix of Eqs. (5) and (7):

P(χAIM|χAIM) = {
P(χX|χY)

}
, (X,Y) ∈ A, B, C, . . . (20)

Here, the diagonal block P(χX|χX) determines the internal (one-center) commu-
nications X → X in atom X alone, which are responsible for the AIM promotion
to its bonding (valence) state in the molecule. The off-diagonal blocks P(χX|χY)

and P(χY|χX),X �= Y, similarly generate the external (two-center) communications
Y → X and X → Y, respectively, between the contributed AO of both atoms, which
are ultimately responsible for the truly bonding effects in the overall IT multiplicities
of the localized chemical bonds between the specified pairs of AIM [10]. It should be
emphasized, however, that the chemical values of diatomic bond multiplicities com-
bine both the one- and two-center effects, of the intra-atom promotion and inter-atomic
delocalization and Charge-Transfer (CT) effects, respectively [9,10,50–56].

As we have already remarked above, the inter-atomic communications in the molec-
ular channel reflect the chemical interactions between different atoms [9,10], so that
the collection of non-bonded (separated) atoms of the promolecule exhibits only the
intra-atomic probability propagations. The same principle can be used to naturally par-
tition the molecular AO communication system of the AIM-arranged basis set χAIM

into its additive and non-additive sub-channels [10] [see also Eq. (1)]:

Ptotal
(
χAIM

∣
∣
∣χAIM

)
= Padd.

(
χAIM

∣
∣
∣χAIM

)
+ Pnadd.

(
χAIM

∣
∣
∣χAIM

)
. (21)

As illustrated in Scheme 2, the former combines all internal (intra-atomic) communi-
cations within each (chemically decoupled) AIM, thus being solely determined by the
diagonal, atomic blocks of the molecular conditional probabilities P(χAIM|χAIM),

Pint.
(
χAIM

∣
∣
∣χAIM

)
= {

P
(
χX|χX

)
δX,Y

} ≡ Padd.
(
χAIM

∣
∣
∣χAIM

)
, (22)

while the latter groups all external (inter-atomic) probability propagations in the
(chemically coupled) diatomic fragments of the molecular system under consider-
ation:

Pext.
(
χAIM

∣
∣
∣χAIM

)
= {P (

χX|χY
)
(1 − δX,Y)} ≡ Pnadd.

(
χAIM

∣
∣
∣χAIM

)
. (23)

It should be stressed at this point that the sub-channel scattering probabilities originat-
ing from the given input do no longer sum up to 1, since this normalization condition
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Scheme 2 Partitioning of the molecular information system in the AO resolution into the one-center
(AIM-internal, additive) and two-center (AIM-external, non-additive) sub-channels, and the underlying
communications between the constituent bonded atoms

applies only to the total matrix of molecular conditional probabilities involving both
the AIM diagonal and off-diagonal communications. In the CTCB/OCT approaches
only the full list of the AIM/AO inputs determines the complete origins (sources) of all
chemical bonds in the molecule. Therefore, both atomic and diatomic entropy/informa-
tion terms, involving the intra-atom and inter-atom communications to both constitu-
ent AIM of the diatomic molecular fragment under consideration, ultimately contribute
to the overall IT bond index in the molecular system in question, which describes the
resultant chemical connectivity between the two bonded atoms. Indeed, the chemical
bond concept combines both the atom-promotion (polarization) and the inter-atomic
delocalization/CT phenomenona.

However, as demonstrated elsewhere [37], the probability scatterings in the given
diatomic fragment of the molecule, which originate from the specified AO input, have
to be weighted by the two-center (AO-AIM) joint probabilities, in order to exclude
the effects of the lone-pair electrons in the resultant bond descriptors. These one-cen-
ter, non-bonding features of the molecular electronic structure can artificially rise the
magnitudes of the overall bond-multiplicities, thus preventing an acceptable agree-
ment with chemical intuition and the related MO descriptors.

As we have already argued in the preceding section (see also [10,37]), the promoted
(valence) state of each bonded atom is determined by the associated diagonal block
of molecular conditional probabilities. Important though it is for the full character-
ization of the AIM valence preparation in the molecule and the resultant, chemical
bond multiplicities, which are reflected by the resultant IT bond-multiplicities and
their covalent/ionic components, it has no direct relevance for the pattern of diatomic
interactions between bonded atoms. Therefore, the partition of Eqs. (21–23) again
emphasizes the importance of separating the additive and non-additive sub-channels,
for distinguishing the chemical one-center promotion of AIM from the two-center,
interaction phenomena in OCT of the chemical bond.

Clearly, in the canonical AO representation there are some internal covalen-
cy (“noise”) and ionicity (information flow) contributions involved in the atomic
promotion processes [34]. One also observes that in the Natural Hybrid Orbital
(NHO) freamework, in which the atomic (diagonal) blocks of the first-order density
matrix become diagonal, the intra-atomic communications become deterministic in
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character, so that the one-center (additive) IT-covalency identically vanishes. As in the
CG probe of the chemical bond localization [10–13], the entropic bond descriptors
of diatomic interactions are then seen to be solely determined by the non-additive
sub-channel, which combines the communications between AO originating from dif-
ferent atoms. When supplemented by the atom-promotion communications and the
bond-weighting in the channel input ensemble, this separation exactly reproduces the
Wiberg [46] bond-orders in diatomic molecules [10,37] and fully account for the
bond-differentiation patterns in diatomic fragments of typical molecules (see Sect. 5).

4 Chemical interaction between two orbitals revisited

Consider the illustrative problem of combining the two Löwdin-orthogonalized AO
(OAO), A(r) and B(r), say, two orthogonalized 1s orbitals centered on atoms A and
B, respectively, each contributing a single electron to form the chemical bond A—B:
p0 = (½,½). The two basis functions χ = (A, B) form the bonding (ϕb) and anti-
bonding (ϕa) MO combinations ϕ = (ϕb, ϕa) ≡ χC ≡ (χCT

b ,χCT
a ):

ϕb = √
P A + √

Q B ≡
∑

k=A,B

χkCk,b, ϕa = −√
Q A + √

P B ≡
∑

k=A,B

χkCk,a,

P + Q = 1; (24)

here the square matrix C = (CT
b |CT

a ) groups the LCAO MO expansion coefficients,
with columns CT

b and CT
a defining the individual MO, expressed in terms of the comple-

mentary probabilities P and Q = 1− P , with P marking the conditional probabilities
P(A|ϕb) = P(B|ϕa) = P , and Q measuring the remaining matrix elements of the
molecular conditional probability matrix: P(B|ϕb) = P(A|ϕa) = Q.

In the ground-state (bonding) configuration Ψ0 = [ϕ2
b ] of this 2-OAO model the

CBO matrix of Eq. (3) reads:

γ 0 = 2

[
P

√
PQ√

PQ Q

]

. (25)

Using Eq. (7) then gives the associated matrices of the joint and conditional probabil-
ities of the two AO in this model chemical bond:

P0(a ∧ b) =
[

P2 PQ
PQ Q2

]

, P0(b|a)=P0(a|b)=
[

P Q
P Q

]

. (26)

The latter defines the non-symmetric binary communication channel shown in
Scheme 3. As also indicated there, the channel IT-covalency (in bits) is determined by
the binary entropy function

S = H(P) = −P log2 P − Q log2 Q, (27)

while the associated IT-ionicity descriptor I 0 = S(p0)−S = 1− H(P). Together they
give rise to the conserved overall (“single”) bond index in the model:N0 = 1 bit. The
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OAO-Input: a P(b a) = P(a b)   OAO-Output: b
p (p0) q ,q0

                                           P 
P     (½) A A P S = Plog2P Qlog2Q H(P)

Q
I0 = 1 H(P)

P
Q    (½) B B Q 0 = 1 

Q

Scheme 3 The non-symmetric binary channel of the 2-OAO model of the chemical bond with the molecu-
lar, p = (P, Q), and promolecular, p0 = (½,½), input probabilities and the molecular output probabilities
q = p. The associated entropy/information descriptors (in bits), giving rise to the conserved overall bond
orderN0 = 1, are also reported [30]

model correctly predicts the purely covalent bond for the maximum-delocalization
(symmetrical) MO, when P = Q = ½, and the purely ionic bond for the limiting
ion-pair configurations [A+B−](P = 0) or [A−B+](Q = 0), which involve the lone
electron pairs on a single AIM [9,30].

The simplest way to identify the additive (internal) and non-additive (external)
bond contributions, which conserve the overall perspective of Scheme 3 as the total
description in the AO-AIM resolution of Eq. (19), is to separate the one-center and
two-center contributions to the entropy/information indices of Scheme 3:

S = (−P2 log2 P−Q2 log2 Q)+ (−P Q log2 Q−Q P log2 P) ≡ Sadd. + Snadd.,

I 0 =
[

P2 log2(2P)+ Q2 log2(2Q)
]

+ [
P Q log(2P)+ Q P log2(2Q)

]

≡ I 0,add. + I 0,nadd.,

N0 =
(

Sadd. + I 0,add.
)

+
(

Snadd. + I 0,nadd.
)

=N0,add. +N0,nadd.=N0,total .

(28)

For the limiting configurations P = (½, 1, 0) this partition gives the following
resolution of the total indices reported in Scheme 3:

It follows from Table 1 that for the purely covalent configuration of P = ½ this
division attributes a half of the overall entropy-covalency Stotal = 1 bit to the one-cen-
ter (additive) covalency and the other half to the two-center (non-additive) covalency
in the model.

It should be emphasized that this partition of the molecular IT-indices of the chem-
ical bond into one- and two-center contributions does not refer to any specific additive
and non-additive sub-channels of propagating the normalized AO probabilities in the

Table 1 Comparison of the limiting values of IT bond descriptors (in bits) of Schemes 3 and 4

P S = Stotal I 0 = I 0,total N0 =N0,total Snadd. I 0,nadd. N0,nadd. Sadd. I 0,add. N0,add.

P = 1/2 1 0 1 1/2 0 1/2 1/2 0 1/2
P = 0, 1 0 1 1 0 0 0 0 1 1
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   OAO-Input: a Padd.(b a)         OAO-Output: b
p (p0) qadd.(q0,add.)

                                           P 

P   (½) A A P2   (½ P) .~addS
I

I

I I I

= P( Plog2P) + Q( Qlog2Q)
.,0~ add = ½(P + Q) = ½ 

Q   (½) B B Q2   (½ Q) .,0~ add = P(½ Plog2P) + Q(½ Qlog2Q)]
Q

   OAO-Input: a Pnadd.(b a)         OAO-Output: b
p (p0) qnadd.(q0,nadd.)

P   (½) A A   QP    (½ P) .~naddS = P( Qlog2Q) + Q( Plog2P)
Q = PQ log2(PQ)

.,0~ nadd = ½(P + Q) = ½ 
P

Q   (½) B B PQ   (½ Q) .,0~ nadd = P(½ Qlog2Q) + Q(½ Plog2P)]
= ½ PQ log2(PQ)

totalS
~

= .~addS + .~naddS = H(P); total,0~
= .,0~ add + .,0~ nadd = 1; total,0~

= .,0~ add + .,0~ nadd = 1 + H(P)

Scheme 4 The additive (upper) and non-additive (lower) sub-channels in the 2-OAO model of the chemical
bond obtained by fixing the molecular conditional probabilities {P( j |i)}. The molecular, p = (P, Q), and
promolecular, p0 = (½,½), input probabilities, are used to determine the IT covalency and ionicity indices
(in bits), respectively, which are also reported together with their partial and total sums

2-OAO system. There are two alternative ways of defining such properly normalized
sub-channels in the model. The one fixing the molecular conditional probabilities of
Eq. (26) is summarized in Scheme 4 while the other, which preserves the molecular
joint probabilities of Eq. (26), is examined in Scheme 5.

Since the partial networks involve the non-normalized subsets of communications
originating from the specified AO/AIM input, the direct summations of Eqs. (12)
and (14) over the non-vanishing probability scatterings will be applied to determine
the associated entropy/information descriptors. Let us first examine the conditional-
entropy and mutual-information descriptors of the additive and non-additive sub-chan-
nels shown in Scheme 4. The additive (one-center) descriptors then read:

S̃add. ≡ S(qadd.|p) = −P2 log2 P−Q2 log2 Q = P(−P log2 P)+Q(−Q log2 Q),

Ĩ 0,add. ≡ I (p0 : q0,add.) = ½P log2 [P/ (½P)] + ½Q log2 [Q/ (½Q)]

= ½(P + Q) = ½,

Ñ0,add. = S̃add. + Ĩ 0,add. = ½[P(1 − 2P log2 P)+ Q(1 − 2Q log2 Q)]. (29)

These partial descriptors are seen to be composed of the molecular probability
weighted contributions to the binary entropy of Eq. (27), besides the constant term in
the information-flow component. As we have already emphasized in the preceding
section, the above intra-atomic information quantities reflect only the AIM promotion
in the model, and have no implications for the chemical interaction between the two
atoms. The latter is described by the associated non-additive (two-center) terms of
Scheme 4:
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OAO-Input: a Padd.(ai bj)/P(ai)     OAO-Output: b
 p  qadd.

P2/P = P
P A A P2 .addS

I

= P( Plog2P) + Q( Qlog2Q)

Q2/Q = Q
Q B B Q2

---------------------------------------------------------------------------------------------------------------------------
OAO-Input: a0 Padd.(ai bj)/P(ai

0)     OAO-Output: b
p0 qadd.

P2/(½) = 2P2

½  A A P2

.,0 add = P2 + Q2

Q2/(½) = 2Q2

½        B B Q2 .0 ,add = P2(1  log2P) + Q2(1  log2Q)]

OAO-Input: a Pnadd.(ai bj)/P(ai)       OAO-Output: b
 p  qnadd.

P A A   QP .naddS = P( Qlog2Q) + Q( Plog2P)
PQ/P = Q = PQ log2(PQ)

PQ/Q = P
Q B B PQ

OAO-Input: a0 Pnadd.(ai bj)/P(ai
0)        OAO-Output: b

p0 qnadd.

½       A A   QP
PQ/(½) = 2PQ

.,0 nadd = 2PQ
       QP/(½) = 2QP

½         B B PQ .0 ,nadd  = PQ[2 log2(PQ)]

totalS  = .addS + .naddS = H(P); total,0 = .,0 add + .,0 nadd  = 1; ,total0 = .0 ,add + .0 ,nadd  = 1 + H(P)I I I

I

Scheme 5 The additive (upper part) and non-additive (lower part) sub-channels in the 2-OAO model of
the chemical bond obtained by fixing the molecular joint probabilities {P(i ∧ j)}. Again, the molecular,
p = (P, Q), and promolecular, p0 = (½,½), input probabilities, are used to determine the entropy-cova-
lency and information-ionicity descriptors, respectively

S̃nadd. ≡ S(qnadd.|p) = P(−Q log2 Q)+ Q(−P log2 P) = −P Q log2 (PQ) ,

Ĩ 0,nadd. ≡ I (p0 : q0,nadd.) = ½Q log2 [Q/ (½Q)] + ½P log2 [P/ (½P)]

= ½(Q + P) = ½,

Ñ0,add. = S̃nadd. + Ĩ 0,nadd. = ½ − P Q log2 (PQ) . (30)

As also shown in Scheme 4, the total indices combining these additive and
non-additive bond-order terms then read:

S̃total = S̃add. + S̃nadd. = H(P),

Ĩ 0,total = Ĩ 0,add. + Ĩ 0,nadd. = 1,

Ñ0,total = Ñ0,add. + Ñ0,nadd. = 1 + H (P) . (31)
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Table 2 Comparison of the limiting values of IT bond descriptors (in bits) of Schemes 3 and 4

P S I 0 N0 S̃nadd. Ĩ 0,nadd.
Ñ

0,nadd. S̃add. Ĩ 0,add.
Ñ

0,nadd. S̃total Ĩ 0,total
Ñ

0,total

P = ½ 1 0 1 ½ ½ 1 ½ ½ 1 1 1 2

P = 0, 1 0 1 1 0 ½ ½ 0 ½ ½ 0 1 1

Table 3 Comparison of the limiting values of IT bond descriptors (in bits) of Schemes 3 and 5

P S I 0 N0 S
nadd.

I
0,nadd. N0,nadd.

S
add.

I
0,add. N0,nadd.

S
total

I
0,total N0,total

P = ½ 1 0 1 ½ ½ 1 ½ ½ 1 1 1 2

P = 0, 1 0 1 1 0 0 0 0 1 1 0 1 1

A comparison of these overall entropy/information quantities with those reported
in Scheme 3 (see Table 2) reveals a different bond composition in this sub-chan-
nel approach, with only the IT-covalency (noise) component being identical in both
descriptions. One now observes that the overall index Ñ0,total is no longer conserved
with changing polarization of MO. It should be also emphasized, that the truly bonding
non-additive terms of Eq. (30) give rise to different composition of the non-conserved
two-center IT bond-order Ñ0,nadd. = 1 in the maximum-delocalization/covalency
(P = ½) and Ñ0,nadd. = ½ in the lone-pair [P = 1, 0 (ion-pair)] configurations,
compared to the conserved value N0,total = 1 predicted by the overall channel of
Scheme 3.

One similarly derives the entropy/information descriptors for the sub-channels
reported in Scheme 5. The comparison between the bond descriptors it generates for
the three limiting configurations with those predicted by the molecular channel of
Scheme 3 is given in Table 3. It follows from Tables 1, 2 and 3 that for the ion-pair
configurations P = (0, 1) the sub-channel overall descriptors of Tables 2 and 3 give
the same IT bond indices as those resulting from the molecular channel (see Table 1),
while for the maximum covalency (P = ½) bonding MO of H2, the additional 1bit of
IT-ionicity is generated in the sub-channel description, due to the renormalization of
the input probabilities in the partial communication channels.

It should be finally observed that this simple RHF description of the model ground-
state gives rise to the (equal) statistical mixture of the covalent (off-diagonal) and
ionic (diagonal) Valence-Bond (VB) structures, which determine the system resultant
electronic structure. The underlying conditional probabilities,

Pcov.(b|a) =
[

½ ½
½ ½

]

and Pion.(b|a) =
[

0 1
1 0

]

, (32)

which define these partial VB-channels [27], shown in Scheme 6, can be used to resolve
the molecular communications P0(b|a) of Eq. (26):

P0(b|a) = ½[Pcov.(b|a)+ Pion.(b|a)]. (33)
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½ A ½ A ½ a)  VB-covalent: A B
½

Scov. = N0
cov. = 1, I0

cov. = 0
½

½ B ½ B ½
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

½ A a ½ b) VB-ionic: [A+B ] + [A B+] A---B
1

Sion.= 0, I0
ion.= N0

ion. = 1
                           1 

½ B b ½

Scheme 6 The elementary VB communication channels for the homonuclear-diatomic A—B and their IT
bond indices [27]

Using the grouping (combination) theorem for IT descriptors of such parallel arrange-
ment [27] of these partial channels then expresses the molecular conditional infor-
mation descriptor as the arithmetic average of the corresponding indices listed in
Scheme 6, while the associated average mutual information quantity has to be increased
by the Shannon entropy of the “ensemble” probabilities. Hence, for P = ½ one
obtains, Sav. = ½, I 0

av. = 3/2, and henceN0
av. = 2, which reproduces the total indi-

ces reported in Tables 2 and 3. Similarly, for P = (0, 1) one finds: Sav. = 0, I 0
av. =

1,N0
av. = 1, again in agreement with the total values listed in these tables.

This observation indicates that all these total IT descriptors of the underlying sub-
channels include 1 bit of the spurious group-entropy in the IT-ionicity component,
which has no relevance for the bonding interaction between AO, thus again leaving 1
bit of the truly bonding information measure for the purely covalent MO at P = ½,
and the vanishing entropy/information bond-order for the lone-pair configurations at
P = (0, 1).

5 Bond-weighted channels and the Wiberg index

In typical SCF LCAO MO calculations the lone pairs of the valence- and/or inner-
shell electrons can strongly affect the IT descriptors of chemical bonds. It has been
argued elsewhere [10,37], that the elimination of such lone-pair contributions to the
resultant IT bond indices of diatomic fragments in molecules requires an ensemble
approach with the orbital input probabilities derived from the joint probabilities of
two orbitals centered on different atoms. Indeed, the contributions due to each AO
input should be weighted using the corresponding joint (two-orbital) probabilities,
which reflect the actual simultaneous participation of the given pair of basis functions
in the system chemical bonds, thus effectively projecting out the spurious contri-
butions due to the inner- and outer-shell AO, which are excluded from mixing into
delocalized MO combinations. This probability-weighting procedure, known as the
flexible input approach, has been shown to be capable of reproducing the Wiberg
bond order in diatomics [46–49], at the same time providing the IT-covalent/ionic
resolution of this index. The diatomic bond multiplicities are determined by the con-
stituent AO of both atoms, χAB = (χA,χB). This partial basis corresponds to the
diatomic block γAB = {γX,Y, (X, Y) = A, B} of the molecular density matrix and
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P 
A A SAB( AB A) = SAB( AB B) = H(P)

Q
I0

AB(A: AB) = I0
AB(B: AB) = 1 H(P)

P
B B

Q

Scheme 7 The elementary (row) sub-channels [9] due to inputs A (solid lines) and B (broken lines) in the
2-OAO model of the chemical bond

the associated part of the conditional probabilities between AO contributed by both
atoms: PAB(χAB|χAB) = {P(χY|χX), (X,Y) = A,B}. The former determines the
effective number of electrons on AB in the molecule given by the partial trace NAB =∑

i∈AB γi,i .
We begin this section by applying this weighting procedure to the 2-OAO model of

the preceding section. In the bond-weighted approach [10,37] one separates the molec-
ular channel of Scheme 3 into the elementary (row) sub-channels due to each OAO
input [9] (see Scheme 7). The conditional-entropy and mutual-information quantities
for these partial communication systems, {SAB(χAB|i)} and {I 0

AB(i :χAB)}, respec-
tively, with the latter being determined for the covalent-reference probabilities p0 =
(½,½) marking the single electrons contributed by each OAO to the diatomic chem-
ical bond, are also listed in the diagram. They represent the IT indices per electron,
so that these contributions have to be multiplied by NAB = 2 in the corresponding
resultant measures.

Therefore, using the off-diagonal joint probability P0(A ∧ B) = P0(B ∧ A) =
PQ = γA,BγB,A/4 as the ensemble probability for both OAO inputs gives the follow-
ing average quantities for the model diatomic bond (see Fig. 1):

SAB = NAB
[
P0(A ∧ B)SAB(χAB|A)+ P0(B ∧ A)SAB(χAB|B)]

= 4P Q H(P) = MA,B H(P),

I 0
AB = NAB

[
P0(A ∧ B)I 0

AB(A : χAB)+ P0(B ∧ A)I 0
AB(B : χAB)

]

= 4P Q[1 − H(P)] = MA,B [1 − H(P)] ,

N0
AB = SAB + I 0

AB = 4P Q = (γA,B)
2 = MA,B . (34)

We have thus recovered the Wiberg index as the overall IT descriptor of the chemi-
cal bond in 2-OAO model, N0

AB = MA,B , at the same time establishing its covalent,
SAB = MA,B H(P), and ionic, I 0

AB = MA,B[1− H(P)], contributions. It follows from
Fig. 1 that these IT-covalency and IT-ionicity components compete with one another
while conserving the Wiberg bond-order of the model as the overall information mea-
sure of the bond multiplicity.

This development can be straightforwardly generalized to a general case of sev-
eral basis functions contributed by each bonded atom [37]. The molecular probability
scattering in the specified diatomic fragment (A, B) involving the basis functions
χAB = (χA,χB) contributed by these atoms to the overall set of AO, χ = {χ X },
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0
AB(P) A,B = 1

1

0 11/2 P

A,BI /0
AB

A,BS /AB

Fig. 1 The variations of the IT-covalent [SAB(P)] and and IT-ionic [I 0
AB(P)] components in the 2-OAO

model of the chemical bond, in MA,B units, with changing MO polarization P and the conservation of the
relative total bond-orderN0

AB(P)/MA,B = 1

is fully characterized by the corresponding block PAB(χAB|χAB) of the molecular
conditional probability matrix. It contains only the intra-diatomic communications,
missing the probability propagations originating from AO of the remaining constituent
atoms χ Z /∈ χAB, thus being perfectly capable of describing the localized chemical
interactions between A and B.

The atomic output-reduction [9] of P(χAB|χAB), carried out by combining the AO
eventsχ X into a single atomic event X in the output of the molecular channel, gives the
associated condensed conditional probabilities of such a partially reduced information
system of diatomic fragment,

PAB(XAB|χAB) = [
P(A|χAB),P(B|χAB)

]

= {P (X|i)} =
∑

j∈X

P( j |χAB);χi ∈ χAB,X = A,B}. (35)

Here, P(X |i) measures the conditional probability that an electron originating from
χi will be found on atom X in the molecule. The sum of these conditional probabil-
ities over all AO contributed by the two atoms then determines the communication
connections {P(AB|i)} linking the condensed diatomic output AB and the given AO
input χi in the communication system of the diatomic fragment under consideration:

P(A|χAB)+ P(B|χAB) = P(AB|χAB)

=
⎧
⎨

⎩
P(AB|i) = P(A|i)+ P(B|i) =

∑

j∈(A,B)
P( j | i) ≤ 1

⎫
⎬

⎭
. (36)

In other words, P(AB|i)measures the probability that an electron occupyingχi will be
detected in the diatomic fragment AB of the molecule. The inequality in the preceding
equation reflects the fact that the atomic basis functions participate in chemical bonds
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with all constituent atoms, with the equality sign corresponding only to the diatomic
molecule, when χAB = χ .

The associated fragment-normalized AO probabilities,

p̃(AB) = {
p̃i (AB) = γi,i/NAB, χi ∈ χAB

}
,

∑

i∈(A,B)
p̃i (AB) = 1, (37)

where NAB = ∑
i∈(A,B) γi,i stands for the number of electrons found in the molecule

on the specified diatomic fragment and p̃i (AB) denotes the probability that one of
them occupies χi∈(A,B), then determine the simultaneous probabilities of the joint
two-orbital events:

PAB(χAB ∧ χAB) = {PAB(i ∧ j) = p̃i (AB)P( j |i) = γi, jγ j,i/ (2NAB)}. (38)

They in turn generate, via the relevant partial summations, the joint atom-orbital prob-
abilities in AB, {PAB(X, i)}:

PAB(XAB ∧ χAB) = [
PAB(A ∧ χAB),PAB(B ∧ χAB)

]

=
⎧
⎨

⎩
PAB(X ∧ i) =

∑

j∈X
PAB(i ∧ j) ≡ p̃i (AB)P(X|i), X = A,B

⎫
⎬

⎭
. (39)

For the closed-shell molecular systems one thus finds:

PAB(X ∧ χAB) =
⎧
⎨

⎩
PAB(X ∧ i) = p̃i (AB)

∑

j∈X
P( j | i) =

∑

j∈X

γi, jγ j,i

2NAB

⎫
⎬

⎭

≡ PAB(χAB ∧ X)T, X = A,B. (40)

These vectors of AO probabilities in the diatomic fragment AB subsequently define
the condensed probabilities {PX (AB)} of both bonded atoms in this subsystem:

PX(AB) = NX(AB)

NAB
=

∑

i∈(A,B)
PAB(X ∧ i) =

∑

i∈(A,B)

∑

j∈X

γi, jγ j,i

2NAB
,X = A,B,

(41)

where the effective number of electrons NX (AB) on atom X ∈ (A, B) now reads:

NX(AB) =
∑

i∈(A,B)

∑

j∈X

γi, jγ j,i

2
. (42)
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Therefore, in diatomic molecules, for which χAB = χ , one finds using the idempo-
tency relation of Eq. (4),

PX(AB) =
∑

j∈X

(
∑

i

γ j,iγi, j

2NAB

)

=
∑

j∈X

γ j, j

NAB
=
∑

j∈X

p̃ j (AB), X = A, B, (43)

and hence PA(AB)+ PB(AB) = 1.
The relative importance of the basis functions of one atom in forming the chemical

bonds with the other atom in the specified diatomic fragment is reflected by the joint
bond (b) probabilities of the two atoms, defined only by the diatomic components of
the simultaneous probabilities [37]:

Pb(A ∧ B) ≡
∑

j∈B

PAB(A ∧ j) ≡
∑

i∈A

PAB(i ∧ B)

= Pb(B ∧ A) =
∑

i∈A

∑

j∈B

γi, jγ j,i

2NAB
. (44)

Indeed, the joint atom-orbital bond probabilities, {PAB(A ∧ j), j ∈ B} and {PAB(i ∧
B, ), i ∈ A}, to be used as weighting factors in the average conditional-entropy (cova-
lency) and mutual-information (ionicity) descriptors of the chemical bond(s) between
A and B, assume appreciable magnitudes only when the electron occupying the atomic
orbital χi of one atom is simultaneously found with a significant probability on the
other atom, thus effectively excluding the contributions to the entropy/information
bond descriptors due to the lone-pair electrons.

The reference bond probabilities of AO, to be used to calculate the mutual-infor-
mation (IT-ionicity) bond index of the diatomic channel, have to be normalized to the
corresponding sums P(AB|χAB) = {P(AB|i)} of Eq. (36). Since the bond probability
concept of Eq. (44) symmetrically involves the two bonded atoms, one applies the same
symmetry requirement in determining the associated reference bond probabilities of
AO:

{pb (i) = P(AB|i)/2; i ∈ (A,B)}, (45)

where P(AB|i) denotes the probability that an electron originating from orbital χi

will be found on atom A or B in the molecule.
In OCT the complementary quantities characterizing the average noise (conditional

entropy of the channel output given input) and the information flow (mutual informa-
tion in the channel output and the reference input) in the diatomic communication
system defined by the AO conditional probabilities provide the overall descriptors
of the fragment bond covalency and ionicity, respectively. Both molecular and pro-
molecular reference (input) probability distributions have been used in the past to
determine the information index characterizing the displacement (ionicity) aspect of
the system chemical bonds. In the bond-weighted diatomic development the equal
bond probabilities of Eq. (45) will be used as the input reference values.
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In the A–B fragment development we similarly define the following (“ensemble”)
average contributions of both constituent atoms to the diatomic-covalency (delocal-
ization) entropy:

SAB(B|χA) =
∑

i∈A
PAB(i ∧ B)SAB(χAB |i ),

SAB(A|χB) =
∑

i∈B
PAB(i ∧ A)SAB(χAB |i ), (46)

where the Shannon entropy (in bits) of the conditional probabilities for the given AO
input χi ∈ χAB = (χA,χB) in the diatomic channel:

SAB(χAB |i ) = −
∑

j∈(A,B)
P( j |i ) log2 P( j |i ). (47)

In Eq. (46), the conditional entropy SAB(Y|χ X ) quantifies (in bits) the X→Y delocal-
ization per electron, so that the total covalency in the diatomic fragment A–B reads:

SAB = NAB
[
SAB(B|χA)+ SAB(A|χB)

]
. (48)

The bond-weighted contributions to the average mutual-information quantities (in
bits) of the two bonded atoms are similarly defined in reference to the unbiased bond
probabilities of AO [Eq. (45)]:

IAB(χA : B) =
∑

i∈A

PAB(i ∧ B)I (i : χAB),

IAB(A : χB) =
∑

i∈B

PAB(i ∧ A)I (i : χAB),

I (χAB : i) =
∑

j∈(A,B)
P( j |i ) log2

(
P( j |i )
pb( j)

)

. (49)

They generate the total information ionicity of all chemical bonds in the diatomic
fragment AB:

IAB = NAB[IAB
(
χA : B

) + IAB(A : χB)]. (50)

Finally, the sum of the above total (diatomic) entropy-covalency and information-
ionicity indices determines the overall information-theoretic bond multiplicity of the
molecular fragment in question:
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NAB = SAB + IAB. (51)

Again, the identityNAB = M(A, B) (Eq. 11) for diatomic molecules, for whichχAB =
χ and the reference probabilities {pb(k) = P(AB|k)/2 = ½}, can be readily demon-
strated:

NAB = SAB + IAB = NAB

{
∑

i∈A

PAB(i ∧ B) [SAB(χ |i )+ I (i : χ)]

+
∑

i∈B

PAB(i ∧ A)[SAB(χ |i )+ I (i : χ)]
}

≡ NAB

{
∑

i∈A

PAB(i ∧ B)N (χ; i)+
∑

i∈B

PAB(i ∧ A)N (χ; i)

}

= NAB

{
∑

i∈A

PAB(i ∧ B)+
∑

i∈B

PAB(i ∧ A)

}

= 2NAB Pb(A ∧ B) = M(A,B), (52)

where we have observed that the conditional IT bond multiplicity due to the input χk

(per single electron)

N (χ; k) =
∑

l∈χ

{−P(l |k ) log2 P(l |k )+ P(l |k ) log2[P(l |k )/pb(l)]
}

=
⎡

⎣
∑

l∈χ
P(l |k )

⎤

⎦ log2 2 = 1. (53)

In Table 4 we have compared the illustrative numerical results of the Restricted
Hartree-Fock (RHF) calculations [37] using two choices of the basis set for the local-
ized interactions in representative diatomic and polyatomic molecules, for their equi-
librium geometries. In diatomic systems the trends exhibited by the entropic covalent
and ionic components of the exactly conserved Wiberg overall bond order generally
agree with intuitive expectations. For example, in the minimum basis set description,
the roughly “single” chemical bond in F2, HF and LiH is seen to be almost purely
covalent, although a more substantial IT-ionicity is diagnosed in the extended basis set
calculations in the fluorine compounds. For the most ionic LiF, which exhibits in the
minimum basis set roughly 3/2 bond, consisting of approximately 1 covalent and ½
ionic bond multiplicities, the extended basis set give approximately a “single” bond-
order estimate, with the information theory again predicting the ionic dominance over
the covalent component of the resultant bond index. In CO, for which the extended
basis set calculations have diagnosed approximately a “triple” bond, this chemical
interaction is again seen to be predominantly covalent.

The basis-set dependence of the predicted IT bond descriptors is seen to be relatively
weak, with the extended basis calculations often giving rise to predictions exhibiting
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Table 4 Comparison of the diatomic Wiberg index M(A, B) and entropy/information bond-multiplicities
NAB, SAB andIAB of the bond-weighted channels for selected diatomic fragments A–B in representative
molecules M: RHF results for equilibrium geometries in the minimum (STO-3G) and extended (6-31G*)
basis sets (from [37])

M A–B M(A, B) NAB SAB IAB
Min. Ext. Min. Ext. Min. Ext. Min. Ext.

F2 F–F 1.000 1.228 1.000 1.228 0.947 1.014 0.053 0.273

HF H–F 0.980 0.816 0.980 0.816 0.887 0.598 0.093 0.218

LiH Li–H 1.000 1.005 1.000 1.005 0.997 1.002 0.003 0.004

LiF Li–F 1.592 1.121 1.592 1.121 0.973 0.494 0.619 0.627

CO C–O 2.605 2.904 2.605 2.904 2.094 2.371 0.511 0.533

H2O O–H 0.986 0.878 1.009 0.896 0.859 0.662 0.151 0.234

AlF3 Al–F 1.071 1.147 1.093 1.154 0.781 0.748 0.311 0.406

CH4 C–H 0.998 0.976 1.025 1.002 0.934 0.921 0.091 0.081

C2H6 C–C 1.023 1.129 1.069 1.184 0.998 1.078 0.071 0.106

C–H 0.991 0.955 1.018 0.985 0.939 0.879 0.079 0.106

C2H4 C–C 2.028 2.162 2.086 2.226 1.999 2.118 0.087 0.108

C–H 0.984 0.935 1.013 0.967 0.947 0.878 0.066 0.089

C2H2 C–C 3.003 3.128 3.063 3.192 2.980 3.095 0.062 0.097

C–H 0.991 0.908 1.021 0.943 0.976 0.878 0.045 0.065

C6H a
6 C01–C2 1.444 1.507 1.526 1.592 1.412 1.473 0.144 0.119

C1–C3 0.000 0.061 0.000 0.059 0.000 0.035 0.000 0.024

C1–C4 0.116 0.114 0.119 0.117 0.084 0.081 0.035 0.035
a For the sequential numbering of carbon atoms in the benzene ring

slightly better agreement with intuitive chemical estimates. One also finds that in poly-
atomic systems the Wiberg bond-orders are very well reproduced by the overall IT
descriptors. The carbon-carbon interactions in the benzene ring are seen to be properly
differentiated and the intuitive multiplicities of the carbon-carbon chemical bonds in
ethane, ethylene and acetylene are correctly accounted for.

The IT bond descriptors provide the covalent/ionic resolution of the Wiberg bond-
order M(A, B), which has been customarily regarded as being of purely “covalent”
origin. However, the LCAO MO coefficients carry the information about both the
electron-sharing (covalent) and electron-separation/transfer (ionic) phenomena in the
chemical bond. Therefore, this overall index in fact combines the covalent and ionic
contributions, which remain to be separated. The present IT approach provides such
a resolution of this in fact resultant bond-order.

6 Operator development and amplitude channels

The partitioning of the molecular channel, defined by the conditional probabilities
P(χAIM|χAIM) between AO, into the associated internal (additive) and external (non-
additive) components of Scheme 2 is in the spirit of a similar division of the matrix
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representations of quantum-mechanical operators in a related context of the opera-
tor internal and external eigenvalue problems [57–60]. The latter approach has been
applied to identify the partially-decoupled channels of the collective electron displace-
ments in reactants [57–59], and it has been successfully used to precisely determine
the inter-atomic flows of electrons in molecules [61–65].

Indeed, the probability-operator origin of the conditional probability matrix is also
seen in Eq. (8): when acting on the input probability vector p it generates generally
different distribution q = pP(b|a). In order to interpret this matrix equation of the
AO representation in terms of the equivalent operator (“geometric”) equation formu-
lated in the relevant probability vector space one first observes that the elementary
propability propagation i → j , from the AO input χi to the AO output χ j in the com-
munication network determined by all chemical bonds in the molecule, as reflected by
the AO conditional probability P( j |i), must be interpreted as the expectation value in

state |χi 〉 = |i〉 of the appropriate propagation operator R̂ j = ˆ̄R j/Ni , of scattering a
single electron to state |χ j 〉 = | j〉. Using Eq. (7) then gives:

P( j |i) = 〈i | R̂ j |i〉 = 1

2Ni

〈
i | P̂ϕ P̂ j P̂ϕ

∣
∣
∣ i
〉
, P̂ j = | j〉 〈 j | , (54)

and hence

R̂ j = P̂ϕ P̂ j P̂ϕ
2

. (55)

This equation provides a transparent interpretation of the propagation operator to the
specified output state | j〉 as the (MO-projected) projection onto the final AO state in
question. The set of all such scatterings defines the molecular probability propaga-
tions to all basis functions, {R̂ j } = R̂, the trace of which generates the molecular
output-probability vector:

tr(D̂R̂) =
m∑

i=1

pi 〈i | R̂ |i〉 =
m∑

i=1

q(i) = q, (56)

where the input density-operator:

D̂ =
m∑

i=1

|i〉 pi 〈i | =
m∑

i=1

pi P̂i . (57)

The probability propagation equation thus acquires the following ensemble-average
interpretation:
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pP (b|a) =
{

m∑

i=1

pi P( j |i ) =
m∑

i=1

pi 〈i | R̂ j |i〉

=
∑

X

∑

i∈X
pi 〈i | R̂ j |i〉 ≡ tr(D̂R̂ j ) = q j

⎫
⎬

⎭
≡ q, (58)

Therefore, the output probability q j represents the input-ensemble average of the
probability-scattering operator R̂ j .

The additive (internal) probability propagation to the specified output | j ∈ X〉, orig-
inating from {|i ∈ X〉}, is then determined by the intra-atomic scattering component
qint. defined by the AIM-internal part of the trace:

pPadd.(b|a) =
{
∑

i∈X

pi 〈i | R̂ j∈X |i〉 = qint.
j

}

≡ qint., (59)

while the complementary non-additive (external) part qext., originating from {|i /∈ X〉}
is given by the associated AIM-external part of the trace:

pPnadd.(b|a)=
{
∑

Y/∈X

∑

i∈Y

pi 〈i | R̂ j∈X |i〉 = qext.
j

}

≡ qext., qint. + qext.= q. (60)

Therefore, for the specified AO input |i ∈ X〉 the corresponding internal and exter-
nal scattering operators read:

R̂
int.
i∈X =

∑

j∈X

R̂ j , R̂
ext.
i∈X =

∑

j /∈X

R̂ j =
∑

Y/∈X

∑

j∈Y

R̂ j . (61)

They determine the associated internal and external parts of the output-probability
component due to this input [see Eq. (56)]:

q(i) = {pi P ( j |i)} = {pi 〈i | R̂ j |i〉} = pi 〈i | R̂
int.
i |i〉 + pi 〈i | R̂

ext.
i |i〉

≡ q(i),int. + q(i),ext.,

m∑

i=1

q(i) = q. (62)

It thus directly follows from the normalization of conditional probabilities (Eq. 5) that

m∑

j=1

P( j | i) =
m∑

j=1

〈i | R̂ j |i〉 = 1 or R̂
int.
i + R̂

ext.
i =

m∑

j=1

R̂ j = 1. (63)

This normalization, that the probability at the given AO input will be scattered with
certainty to some of the AO outputs, expresses the conservation of electronic proba-
bilities in the molecule.
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Scheme 8 The AO probability propagation product γi, jγ j,i as communication link in the sequential cas-
cade of two elementary CBO (amplitude) sub-channels, each defined by the density matrix γ

It follows from Eq. (7) that in the closed-shell configurations P(χ j |χi ) = P( j |i) =
γi, jγ j,i/(2γi,i ) and P(χi |χ j ) = P(i | j) = γ j,iγi, j/(2γ j, j ). Hence the equality
between the renormalized communications linking these two orbitals, proportional
to the joint probability P(i ∧ j) [see Eq. (9)],

γi,i P( j |i) ≡ P̃( j |i ) = γ j, j P(i | j) ≡ P̃(i | j )

= γ j,iγi, j/2 = (γi, j )
2/2 = N P(i ∧ j). (64)

Using the idempotency relation of Eq. (4) one finds their partial-normalization rela-
tions:

m∑

j=1

P̃( j |i ) =γi,i and
m∑

i=1

P̃( j |i ) =γ j, j . (65)

It also follows from Eq. (64) that the elements of the CBO matrix themselves deter-
mine the communication links in the associated amplitude channel. Indeed, γ j,i or γi, j

determine the amplitude of the renormalized joint-probability P̃( j |i ) = N P(i ∧ j):

P̃( j |i ) =
(
γi, j√

2

)2

= [ Ã( j |i )]2. (66)

Therefore, the conditional-probability amplitude Ã( j |i )∝γi, j can be regarded as the
amplitude propagation connection χi → χ j in the underlying communication system
called the amplitude channel of Scheme 8.

It thus follows that the elementary AO communication of Eq. (66) can be regarded
as representing the resultant link χi → χ j → χi in the sequential cascade consisting
of two amplitude channels (see Scheme 8), with the AO outputs of the first information
system constituting the inputs of the second system. A reference to the idempotency
relations of Eq. (4) then shows that the sum over all such common inputs/outputs j of
both subsystems in the combined communications {i → j → i} of the sequential cas-
cade generates, to a common multiplicative factor, the resultant (diagonal) amplitude
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propagation i → i :

m∑

i=1

Ã( j |i ) Ã(i | j ) = 1

2

m∑

i=1

γi, jγ j,i = γi,i = √
2 Ã(i |i ). (67)

7 Eigenvalue problems

In the familiar framework of the closed-shell RHF theory the MO ϕ(r) = 〈r|ϕ〉 =
〈r|χ〉C = χ(r)C, where the matrix of LCAO MO coefficients C = 〈χ |ϕ〉 =
{〈χ |ϕi 〉 = CT

i } combines projections of MO onto the (OAO) basis statesχ(r) = 〈r|χ〉,
diagonalize the CBO matrix γ = 〈χ |ϕ〉d〈ϕ|χ〉 ≡ 〈χ |γ̂|χ〉, with the diagonal matrix
of MO occupations d = {niδi, j } representing the eigenvalues of the underlying matrix
or operator equations:

γCT
i = ni CT

i or γ̂|ϕi 〉 = ni |ϕi 〉, i = 1, 2, . . . ,m. (68)

Of interest also are [57–65] the associated internal and external eigenvalue prob-
lems of this density matrix in the AIM fragment resolution. They are respectively
defined by the AIM-diagonal (additive, γAIM

int. ) and AIM-off-diagonal (non-additive,
γAIM

ext. ) parts of γAIM = 〈χAIM|γ̂|χAIM〉:

γAIM = {
γX,Y

} = {γX,XδX,Y} + {γX,Y(1 − δX,Y)} ≡ γAIM
int. + γAIM

ext. , (69)

γAIM
int. DT

α = ναDT
α, α = 1, 2, . . . ,m, Dα = {DX,α∈X} and (70)

γAIM
ext. dT

β = ωβdT
β, β = 1, 2, . . . ,m. (71)

The internal modes define the NHO of the externally-decoupled AIM,

λX = {λX,α = χXDT
X,α} ≡ χXDX, X = A,B, . . . , (72)

with {να} standing for the NHO occupations in the promoted, valence-state in the
molecule, while the the external modes,

ψext. = {ψβ = χAIMdT
β} ≡ χAIMd, (73)

consisting of pairs of the delocalized (CT-active) modes {ψ−|ω|, ψ+|ω|}, for the
non-vanishing eigenvalues {ωβ} measuring the electron-transfers {ψ−|ω| → ψ+|ω|}
between atoms, and the zero-eigenvalue (atomic) modes, for the zero inter-atomic elec-
tron flows, representing the interaction-induced polarization of bonded atoms [57–65].

A similar block partitioning in the AIM-fragment perspective can be carried out
for the scattering probabilities in the AO resolution, e.g., of the conditional probabili-
ties [see Eqs. (22, 23) and Scheme 2] and their renormalized analogs for the joint AO
events. The corresponding eigenvalue problems it generates would similarly deter-
mine the independent (decoupled) probability propagation modes, for the internal
promotion of AIM and the external CT-active modes of bonded atoms, which provide
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the most compact description of the reconstruction of the information distribution in
the bond-formation process, involving a transition from the initial state of the atomic
promolecule to the real molecular system. Such an eigen-solution approach to com-
munication systems in the AO resolution will be explored in future studies.

8 Conclusion

In this work we have outlined the key concepts of the OCT of the chemical bond,
including the underlying two-orbital probabilities defining the molecular communica-
tions between AO and their entropy/information descriptors providing the IT measures
of the overall bond multiplicity and its covalent (noise) and ionic (information flow)
components. The additive (intra-atomic) and non-additive (inter-atomic) contributions
to these molecular probability-propagation networks have been established and their
role in the bonding phenomena has been examined for the illustrative case of the chem-
ical interaction between two AO. This development is in spirit of the related studies
stressing the importance of the non-additive information contributions for extracting
the subtle changes due to the chemical bond formation [7–9,12–14].

We have demonstrated in this and previous studies that the AO-resolved OCT using
the ensempble (bond) input probabilities and recognizing the bonding/antibonding
character of the orbital interactions in a molecule, reflected by the signs of the under-
lying CBO matrix elements, to a large extent remedies the problem of the insufficient
bond differentiation observed in the AIM-resolved CTCB [9]. The off-diagonal condi-
tional probabilities it generates are proportional to the quadratic (Wiberg) bond indices
of the MO theory, and hence the strong inter-orbital communications correspond to
strong bond-multiplicities. It also properly accounts for the increasing populational-
decoupling of AO, when the anti-bonding MO become occupied [37]. It should be
also emphasized, that the extra computation effort of this IT analysis of the molecular
bonding patterns is negligible, compared to the standard computations of the molec-
ular electronic structure, since all quantum-mechanical computations in the orbital
approximation already determine the CBO data required by this generalized formula-
tion of OCT.

The bond-weighted ensemble approach within OCT extends our understanding of
the chemical bond from the complementary viewpoint of the Communication Theory.
The bond-probability weighting of contributions due to separate AO inputs fully repro-
duces the bond differentiation in diatomic fragments of the molecule, as implied by the
quadratic bond index of Wiberg, and gives rise to its resolution into the complementary
IT-covalent and IT-ionic components. This has been illustrated using the two-orbital
model and the representative RHF calculations for selected diatomic molecules and
representative diatomic fragments in typical polyatomic systems.

The operator formulation of the probability-scattering phenomena in molecules
has been given and the additive and non-additive contributions to the probabilities
defining the molecular communication system have been identified as corresponding
input-ensemble averages. The probability-amplitude channels defined by the CBO
matrix itself have been introduced and examining the separate internal and external
eigenvalue problems of molecular probability-scattering channels has been advocated.
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The advantages of examining the intra- and inter-atom decoupled modes, determined
by the separate internal and external eigenvalue problems of the molecular condi-
tional probabilities, have been advocated as providing the most compact represen-
tations of the intra-atom promotion and inter-atomic delocalization/CT phenomena,
respectively.
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